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1. Introduction

Quality inspection in manufacturing has been traditionally 
focused on using manual methods to determine the compliance 
of a product with quality requirements and standards [1].
However, manual inspections can be time-consuming, prone to 
human errors, and introduce bottlenecks in the production line 
[2]. In this context, digital advancements, such as those in the 
field of metrology, allow for the in-line inspection of products 
[3], [4], thus reducing further added value activities on top of 
defective parts.

With the early introduction of quality inspection solutions 
in the production line, defective products can be removed from 
production early, reducing the number of consumables and 
resources wasted on them [5], [6].

In a production line, products can develop a series of 

defects. The most common types of defects include surface 
defects, structural defects, dimensional defects, and
metallurgical defects [7]. In modern manufacturing, digitalized 
metrology solutions coupled with Artificial Intelligence (AI)
methodologies, such as Machine Learning (ML) algorithms,
have been proven to be capable of accurately detecting surface 
defects of products [8]. Despite the advances presented in [8],
vision-based techniques, that are primarily used for surface
defects detection, are highly dependent on parameters such as 
handling background noise, texturing, and lighting. 
Furthermore, the ML algorithms suitable for surface defects 
detection using vision systems, rely on a large number of 
labelled data that can be hard to acquire and preprocess, while
also having to fine-tune hyperparameters in order to achieve a 
desirable performance [9], [10].

In this study, a methodology based on the use of 3D point 
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Abstract

A manufacturing process includes inspecting the product to verify it meets its quality standards. Such steps, however, are time-consuming and,
depending on the means, prone to errors. If not identified in time, defects occurring at an early step of a manufacturing process may result in 
significant waste, especially if the product is not easy to re-work. Today, however, the combination of AI with computer vision technologies can 
enable manufacturers to transform quality inspection by automating the detection of defects. This study discusses the use of products’ 3D shape
for inline surface defect detection, facilitating the adoption of proactive control strategies facilitating the reduction of waste. The product’s 3D 
shape, represented by a point cloud is acquired by two fixed laser triangulation sensors orthogonally arranged. The K-means method is adopted
for the point cloud data analysis, while Voxel Grid filters are used for downsampling to reduce computational time. The proposed approach has 
been evaluated in a use case related to the production of steel parts, with the findings supporting that an in-line implementation can facilitate the 
detection of surface or geometry defects, which, in turn, may facilitate the reduction of waste, by avoiding further processing of the defective 
product.
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clouds for steel parts quality inspection and surface along with 
dimensional defects detection is discussed. The proposed 
approach relies on extracting valuable features from 3D point 
clouds. Through the extracted features, surface and 
dimensional defects are detected. The computational time 
required for defect detection using a 3D point cloud is kept 
relatively low, by two preprocessing steps, thus making the 
approach suitable for inline deployment. Furthermore, the 
proposed methodology bypasses the limitations and challenges 
that accompany the ML algorithms used in vision-based 
approaches, such as the requirement for large, labelled image 
datasets and sufficient and consistent lighting. The 
methodology is tested in a steel parts use case using 3D point 
clouds of products acquired inline using a laser-line 
triangulation (LLT) system. The acquired point cloud data 
complement the real-world production data used in the study 
due to the latter’s lack of production parameters necessary for 
surface defects detection through data-driven algorithms.

2. Literature Review

In manufacturing, there is a demand for quality control 
systems [11]. These systems not only enhance the reliability 
and efficiency of the production line but also ensure that 
manufactured components, adhere to the stringent standards 
concerning products’ surface quality, and its dimensional
parameters like width, height, and straightness [12].

According to research performed around a rail 
manufacturing production line, an inspection system that 
leverages differential images was created [13]. By comparing 
and analysing differences between successive images of the 
rail, the system could identify crucial surface defects that might 
be missed by other conventional methods. This method used
image processing and neural networks to achieve high accuracy 
in surface defect detection, ensuring better performance in 
production. Similarly, a Convolutional Neural Network (CNN)
was used in [14] to correctly detect surface defects in hot–rolled 
steel strips. Likewise, in [15] using a CNN model, on-line,
defect detection was possible. By using image-based deep 
learning techniques, this method proved to be superior to other 
traditional ones, such as common pattern classifiers like 
Support Vector Machine (SVM), K nearest neighbour, and K-
Means [16]. In addition, an automatic visual inspection can also 
be employed in the task of identifying surface defects, as 
discussed in [17] for predicting surface defects in steel rolling 
mills. However, in contrast to the findings of [14], [15] and [16]
high-frequency cameras in conjunction with machine learning 
are used to detect defects in [18], where SVM is supported to 
outperform other approaches.

As an alternative to using ML approaches to identify surface 
defects in manufacturing, a study explored the monitoring and 
inspection of self-excited vibrations through the grinding 
process of a steel bar [19]. Based on the previous research, 
processes that are part of the production are highly associated 
with the number of surface defects. This was addressed in 
another study that investigated the impact of reheating layers in 
Metal Additive Manufacturing (MAM) on the surface finish 

printed parts [20]. While pointing out the importance of 
achieving an optimal surface finish, experiments were 
performed on the relationship between different reheating 
processes and the quality of surface finish in MAM parts.

In contrast to the methodologies already discussed for 
surface defect detection, many studies consider 3D data for the 
identification of surface quality defects, such as [21] and [22]. 
A comprehensive review is provided in [23] where it concluded 
that when using 3D point clouds for defect identification in 
manufacturing, due to the large size of point clouds 
computational time can be high. In [24], a deep learning 
technique for defect identification in 3D data, like point clouds, 
used a combination of the Iterative Closest Point algorithm and
Nearest Neighbor (NN) on voxelized down sampled point 
clouds. The study demonstrated that it could surpass the 
limitations of the two methods when used individually. 
Simultaneously it resulted in a low computational time of 1.29 
seconds. However, the number of points per point cloud of the 
workpiece that were tested was relatively low at a total of 2500 
points even after data augmentation, which can lead to a high 
voxel size that results in the reduction of accuracy regarding 
the details of the whole workpiece. In addition, in [25], a 
method that used point clouds to accurately detect and measure 
scratches on the surfaces of parts for vehicles applied Principal 
Components Analysis (PCA) and normal vectors. Similarly, 
PCA was used in [26] where a bilateral weight integration 
algorithm was integrated with a scratch localization method.
However, the methodology presented was highly dependent on 
the level of detail of the point cloud. Moreover, in the
production of integrated circuits, deep learning techniques 
were also applied to 3D point cloud data to boost quality 
inspection and detection of surface defects [27]. In addition, in
[28] the recognition of sheet metal part boundaries is achieved 
using point cloud data which represent 3D geometric
coordinates and are processed by an AR-Point Net model.

Diving deeper into ML techniques used in surface defect 
identification in manufacturing, Neural Network techniques
can also be employed when dealing with 3D point clouds for 
surface defect detection as presented in [29]. However, it is 
evident from [29] that such methodologies can be very time-
consuming in identifying defects in products. Clustering and 
multiclass classification models can be trained and validated on 
point cloud data, that can identify surface defects with minimal 
human input [30], [31]. Neural networks specifically designed 
for point cloud data have been used for prediction, enhancing 
uncertainty quantification, and quality control [31].

Alternatives to 3D point cloud approaches for defect 
detection, such as vision-based deep learning techniques using 
CNNs, have demonstrated adequate performance [32].
However, such alternatives rely heavily on consistent scene 
illumination and periodic camera lens maintenance due to 
possible dirt accumulation which is not observed in scenarios 
where point clouds are used [32].

Concluding, the methodologies, approaches, and techniques 
explored and implemented have demonstrated differing results 
in surface defect detection. While some methods, such as the 
voxelization of point clouds or combining PCA with the normal 
vector of the point clouds in conjunction with machine learning 
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have shown promising results in detecting surface defects [25], 
[26], [27], inline point cloud generation and processing has not 
been fully explored. This is, due to the point cloud’s potentially 
high number of points needed to accurately represent a physical 
object, as well as the computational time and cost that 
accompanies its processing. These gaps provide fertile ground 
for further research. This study addresses them by proposing a
methodology for preprocessing the 3D point clouds thus 
reducing the required computational time while retaining 
valuable information.

3. Approach

This work follows an ML approach, using 3D point clouds 
for surface and dimensional defect identification. Considering 
the computational burden of 3D point cloud processing, the 
down-sampling preprocessing step has been adopted to reduce 
the computational time. In brief, the approach can be 
summarized in the four generalized following steps:

• Acquisition of point cloud using an LLT sensor,
• Point cloud preprocessing,
• Application of ML algorithms,
• Defects identification.

In detail, 3D data like point clouds are expected to contain 
large amounts of information with high complexity since the 
more detailed and accurate the representation of the real object 
is, the larger the sum of total points in the point cloud. Inline 
3D point cloud acquisition is handled by a LLT instrument. To
reduce computational time and cost while at the same time not 
losing valuable information Voxel Down Sampling (VDS) is 
performed on the point cloud. VDS uses a regular voxel grid 
that essentially creates a uniformly down sample point cloud 
that has approximately the same details but with considerably 
fewer points. This is performed by assigning point cloud points 
into buckets, then each occupied voxel generates exactly one 
point by averaging all points inside. A large value of the 
parameter ‘voxel size’ will result in a largely down sample 
point cloud, providing a less detailed point cloud but 
potentially decreasing computational cost.

After that, PCA starts with centring the point cloud, which 
is done by computing the centroid (geometric centre) of the 
point cloud. A translation of all the points is performed so that 
the centroid becomes the origin point. By computing PCA, the 
eigenvectors are found, they represent the directions with the 
maximum variance. Finally, the point cloud could be rotated
based on the sorted eigenvectors previously computed, with 
this process the proper orientation of the point cloud is 
performed.

The orthogonal projection of the point cloud is then 
performed to the XZ and XY planes, so the reference point 
calculation is simplified to a 2D problem. This process 
highlights the importance of PCA, a projected non–oriented
point cloud would lose a considerable amount of information, 
specifically, holes would lose their circular shape. This part of 
the approach is justified due to the simple shape of the metal 

bar, for a more complex shape, the transformation from 3D to 
2D would require adjustments on the PCA. The effort required 
to implement such adjustments heavily depends on the 
complexity of the shape and can range from a few minutes to 
several hours.

Next, a bounding box is used to filter points that are not 
relatively close to the inspection area of the point cloud, this 
aids the computational process, by limiting the search areas.
The unsupervised ML algorithm K-Means is used to compute 
two clusters:

• Cluster 1: Points around the area of interest,
• Cluster 2: Points (or absence of points in the case of holes)

inside the area of interest.

The K-Means clustering method is based on minimizing the 
within-cluster sum of squares, which enables fast, flexible, and 
scalable computation of clusters. This enables the targeted low 
computational time and justifies the selection of K-Means.
After that, for a specific k, the supervised ML algorithm k-NN 
classifies the points in each cluster. The results return a ring
around the circumference of the hole (Cluster 1) that is 
consisted of boundary points, that define the centre and radius 
of each hole. Through these boundary points, it is possible to 
identify surface and dimensional defects on a product 
(scratches, surface, cracks). Both the K-means and k-NN 
algorithms were selected for their accuracy and low 
computational cost. Summarizing, the output of the two 
described ML techniques are reference points needed to detect 
dimensional and surface defects.

By computing distances between those reference points
insight and inferences can be drawn on the quality of the 
surface the physical object the point cloud represents. The 
inferences can be drawn through the comparison of the 
distances and angles in the 3D CAD model of the product and 
the point cloud. Depending on the deviations this may also 
reveal further insight into the need to further calibrate the 
production process equipment. Having reduced the complexity 
of the ML algorithms, a complex 3D problem is transformed 
into a simpler format.

Since the goal of this approach is the reduction of defective 
products through early detection we propose as a next step the 
application of sustainable manufacturing practices in the 
manufacturing line. Sustainable manufacturing focuses 
simultaneously on reducing the environmental footprint of 
manufacturing while increasing its economic viability. As soon 
as a product has been classified as defective either due to the 
presence of dimensional or surface defects, it should be 
removed from the manufacturing line. The removal of the
defective product from the line ensures that no further 
resources are wasted in processing it. This reduces emissions, 
raw material consumption and resource consumption. In this 
way, both aspects of sustainable manufacturing can be 
achieved since the reduction of emissions is directly linked to 
the reduction of resource consumption which translates to 
monetary gains.

As a final step, the quantification of the impact the 
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methodology has in terms of sustainability is necessary. This 
can be achieved by performing an LCA analysis following the 

standardized approach presented in ISO 14040 [33]. An 
overview of the approach can be found in Fig. 1.

Fig. 1. Inline dimensional and surface defects detection using 3D point clouds

4. Implementation

The proposed approach was implemented in a software 
prototype to check the validity of the methodology. The 
programming language used was Python, version 3.9. The
development was conducted on a Windows 10 computer, 
utilizing Visual Studio Code (VS Code) as the primary 
Integrated Development Environment (IDE). This Standalone 
Development was deployed in a machine equipped with a CPU: 
Ryzen 5 3600, a GPU: NVIDIA Gigabyte 1660 Super, and a 
RAM of a total of 16 GB memory. Python in conjunction with 
VS Code provided a robust environment for coding, 
debugging, and testing. The libraries that were used include the 
Open3D library, NumPy, SciPy, Scikit-learn and Matplotlib.
Open3D was responsible for visualizing the 3D point cloud and
preprocessing it. NumPy was used to store the x, y and z 
coordinates of each point of the point cloud into an array. SciPy 
was used for spatial data analysis. Scikit-learn provided the 
necessary K-Means and k-NN algorithms and through 
Matplotlib 2D data was visualized.

The methodology was tested using six acquired point clouds 
from an LLT instrument. The sensor is installed on the end
effector of the robot. This allows the sensor to scan the entire 
product, thus generating a complete 3D representation of the 
scanned product. The number of points in each point cloud was 
approximately 800.000 points and their resolution was
approximately 0.4 mm, which allows the detection of surface 
defects at a scale of centimeters. The size of a point cloud file 
was approximately 20MB. The length of the product is 
measured to be approximately 1100 mm. Lastly, to measure the 
impact of the methodology, the LCA analysis discussed in 
section 3 was conducted using the GaBi LCA for Experts 
software [34]. An overview of the implementation can be seen 
in Fig. 2.

Fig. 2. Overview of the components used in the implementation.

5. Use Case

The proposed methodology was tested in a steel trailer arm
use case. Specifically, in-line 3D point cloud acquisition of all 
products exiting a production process is performed, through a 
LLT instrument. Specific distances were calculated using the 
approach presented in section 3 and reference points in the 
trailer arms were identified as can be seen in Fig. 3 where the 
green reference point (centre of the hole) was identified 
through its circumference (red circle). To classify a product as 
defective, the results of the calculations were compared against 
the predefined, manufacturer, limits. In a similar manner, the 
second part of the methodology was consequently applied to 
detect possible surface defects in every product tested.
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a) b)

Fig. 3. The identification of reference point inside a hole of the point cloud: a) 
Original point cloud, b) Processed point cloud.

The next step includes evaluating the impact of the approach 
in terms of sustainability. The LCA methodology was utilized 
as described in the ISO 14040. The GaBi software provides 
several impact assessment methodologies. The CML 2016 [35]
midpoint methodology was used to calculate the emissions 
before and after the application of the approach in the steel 
parts use case. CML 2016 was chosen to minimize the 
uncertainties of the calculations. In order to compare the results 
of the application of the proposed approach, real-world
production data of 24 hours, including production parameters, 
defect metrics and resource consumption data, were inputted in 
GaBi to measure the current environmental impact.

CML 2016 provides many impact categories. In this study,
the Global Warming Potential [kg CO2 eq.] and the Abiotic 
Depletion, fossil [kg SB eq.] were chosen. This selection was 
made due to the manufacturer’s high emissions of CO2 and high 
usage of fossil fuels.

The GaBi software applied the CML 2016 methodology to 
convert raw production data into environmental impacts. It 
calculated Global Warming Potential by translating greenhouse 
gas emissions into CO2 equivalents and assessed the Abiotic 
Depletion of fossils by quantifying the consumption of fossil 
resources in standard biomass equivalents.

During the tests conducted with the captured point clouds, 
the average accuracy of the methodology resulted in 
approximately 80% successful detection of surface and 
dimensional defects. Based on the approach’s calculated 
performance, a simulation of the manufacturing line was 
conducted to calculate the effect of early detected defects. The 
simulation of the line was performed using a pre-existing 
simulation model. 

In the present scenario (As-Is scenario), surface defects are 
detected at the last step of the production line by a manual 
inspection technique which is time-consuming and prone to 
human errors. In the simulated scenario (To-Be scenario), 
defects are detected using the presented approach at an earlier 
stage. An 80% early defect detection rate was simulated to 
match the methodology’s performance. Nevertheless, the 
approach is deployed in a production stage where early defect 

detection is applicable, but the resource consumption of prior 
steps can’t be altered. The results of the simulation are 
presented in Table 1 and Table 2. Table 1 presents the 
production-related impact of the methodology’s application in 
terms of the number of defects reaching the end of the
manufacturing line.

Table 1. Production-related impact of surface defects detection

As-Is scenario To-Be scenario

Number of trailing arms with 
surface defects arriving at the 
end of production.

100% 20% (80% reduction)

Additionally, Table 2 presents the environmental impact of 
the methodology’s application.

Table 2: Environmental-related impact of surface defects detection

As-Is 
scenario

To-Be scenario

Global Warming Potential [kg 

CO2 eq.]

4760 4331

Abiotic Depletion, fossil [kg 
SB 

eq.]

64400 58282

Based on the simulation results and the environmental data 
generated by the GaBi software and presented in Table 2, it is 
evident that by applying the proposed approach an 
improvement of approximately 10% in environmental-related
metrics is feasible.

Lastly, it was calculated that the required time to apply the 
methodology outlined in section 3 to the acquired point clouds 
that contained 800.000 points, was 3.852 seconds. The 
computational time was in line with the requirements set by the 
manufacturer to ensure that no bottlenecks are introduced into 
the production line.

6. Conclusion

A methodology aiming at using 3D point clouds for quality 
inspection in manufacturing was presented. In the study, six 3D 
point clouds were acquired using a laser line triangulation 
instrument. Using the acquired point clouds a series of steps 
were applied to detect surface and dimensional defects. The 
testing and the validation conducted indicated that the 
methodology has a relatively high accuracy.

Nevertheless, the biggest identified challenge revolved 
around the consistent acquisition of high-quality 3D point 
clouds. Furthermore, the methodology requires further fine-
tuning. 

Future research includes scaling up the approach to detect 
more complex defect shapes, the inclusion of a 2D vision 
system with telecentric lenses for the hole detection part of the 
approach and testing the performance of neural networks 
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capable of further automating the process of identifying surface
and dimensional defects. Also, an updated version of the laser 
line triangulation instrument is under development, aiming at 
higher measurement accuracy, below 0.1mm. Lastly, the 
application of the methodology in line is required in order to 
evaluate the setup in a real-world scenario.
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